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The term Molecular Gastronomy describes a wide variety
of culinary techniques based on the rigorous application
of scientific methods in the kitchen.

Techniques such as cooking meat for three days at
60°C, making ice cream with liquid nitrogen, or
spherification are now common in many fine-dining
restaurants.

An area which has received some attention as well are
the chemical compounds that give food its flavour.



Food pairings

In recent years it has been suggested by several chefs
and food scientists involved in Molecular Gastronomy,
that two foods taste good together if they share chemical
flavour compounds.1,2

This allows for the prediction of surprising taste
combinations.

1)H. Blumenthal, The Big Fat Duck Cookbook (Bloomsbury), 2008
2)http://www.foodpairing.be and http://blog.khymos.org
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Food pairings

Examples of surprising combinations which have been 
discovered include:
Pork & Jasmine

White chocolate & Caviar
Dark chocolate & Blue cheese

Honey & Gruyere cheese
Coffee & Garlic



Food pairings

We have
foods 



Food pairings

We have
foods 

(e.g. apple, coffee, beef, broccoli)



Food pairings

We have
foods 

(e.g. apple, coffee, beef, broccoli)

which contain, and share 

flavour compounds



Food pairings

We have
foods 

(e.g. apple, coffee, beef, broccoli)

which contain, and share 

flavour compounds
(e.g. Acetaldehyde, Ethyl trans-2-hexenoate, 



Food pairings

We have
foods 

(e.g. apple, coffee, beef, broccoli)

which contain, and share 

flavour compounds
(e.g. Acetaldehyde, Ethyl trans-2-hexenoate, 

and 4-(2,6,6-Trimethyl-cyclohexa-1,3-dienyl)but-2-en-4-one)



Bipartite network

Hence we can draw a so-called bipartite network.

apple

coffee

beef

broccoli

cinnamon

Acetaldehyde

Ethyl trans-2-hexenoate

Palmitic acid 

Propionaldehyde

4-(2,6,6-Trimethyl-cyclohexa-1,3-dienyl)but-2-en-4-one
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We will analyse this bipartite network using the tools of complex 
network research. 

This is a field that has grown very rapidly over the last decade, 
after it was shown that many different real-world networks share 
common features and can be analysed using the same tools.
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The data

Our network consists of M = 1507 foods and N = 1107 compounds. 
It was compiled from a reference handbook for food chemists [1], by
looking up the natural occurrences of flavour compounds.

[1] G. A. Burdock, G. Fenaroli, Fenaroli’s Handbook of flavour Ingredients (5th ed., CRC Press).
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of M foods and N compounds



One-mode projection

The unweighted, bipartite adjacency matrix A, 
of M foods and N compounds

can be converted into a weighted M x M adjacency matrix W
of foods only, through a one-mode projection.



The weights

This means that the entries wij of the matrix W, given by

indicate the number of compounds shared between foods i and j.
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The weights

apple

coffee

beef

Acetaldehyde

Ethyl trans-2-hexenoate

Palmitic acid 

apple coffee

beef

2

1

And apple and beef share 
one compound.



Too dense!

The resulting network between foods is too dense to be drawn in
a meaningful way, because several compounds are shared by a
large number of foods, which then become a fully connected
subgraph.
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Backbone extraction

In order to visualize the 
network we extract its 
backbone, using the 
approach of Serrano et 
al. (PNAS, 2009).

We see a clear modular 
structure, which strongly 
correlates with the food 
types (colours), such as 
meat, fruit, vegetable, 
etc.



published in Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, A.-L. Barabasi, Scientific Reports 1, 196 (2011)
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Let us return to the beginning - the hypothesis was that two 
foods go together if they share compounds, and based on 
anecdotal evidence it seems to work.

But can we test this quantitatively?
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Yes, using recipes.

Yong-Yeol Ahn crawled 56498 recipes from the

databases. 



Recipes

A recipe R is a set of ingredients, and therefore corresponds to a 
subgraph in the flavour network.

To measure whether this recipe confirms the shared compound
hypothesis, we can calculate the average edge weight in this subgraph:



Recipes

We can then randomize the recipes, and calculate: 
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Recipes

What we find is that there is indeed a tendency for ingredients 
in the same recipe to share compounds…

[FIG]             [FIG]

…and it is significant, but only for certain cuisines!
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What might be going on?

The result for Asian and Southern European cuisines could have 
several explanations:

- effects other than compound sharing also determine flavour 
compatibility 

- umami plays a big role in Asian and Southern European cuisines

- recipes are a problematic dataset and may be distorting results

- there might be cultural biases in the compound-ingredient data

- we are not using concentrations or detection/recognition thresholds
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Summary

To summarize, it appears that: 

- North American and Western European culinary culture has 
developed a preference for pairing foods that share chemical flavour 
compounds, while 

- East Asian and South European cuisines appear to deliberately pair 
ingredients that do not share compounds.

- Both tendencies are statistically significant.

- More details: Ahn, Ahnert, Bagrow & Barabasi, Sci. Rep. 1, 196 (2011).
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Improving the data

The data sets we have seen so far are far from perfect:

• We have no information on the relative impact
(odor activity value) of flavour compounds.

• Recipe data is problematic, as many recipe
ingredients contribute texture and structure to a
dish, not just flavour.
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Improving the data

We have therefore started to collect new data to analyse:

• Food pairings recommended by chefs

• Compound concentrations

• Odour and flavour thresholds

• Odour and flavour descriptions of compounds
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list of thousands of food pairing recommendations by
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The Flavour Bible

The Flavour Bible by Karen Page and Andrew
Dornenburg (Little, Brown and Company) is a curated
list of thousands of food pairing recommendations by
chefs, with several levels of recommendation strength.

The advantage this data set has over the recipes is that
these pairings focus on flavour.



Volatile Compounds in Foods

The commercial VCF database contains compound
concentration information on a large number of food
ingredients.

We were kindly given access to this databases for
research purposes by Ben Nijssen at TNO.



Odour and flavour thresholds

We also purchased a copy of a database containing over
20,000 odour and flavour threshold values1.

Using these we are hoping to calculate odour activity values
(OAVs) to compare the relative impact of different flavour
compounds in the flavour profile of an ingredient.

This however is not straightforward, as thresholds vary
considerably depending on the medium the compound is
in, among other factors.

1) Odour and Flavour threshold values in air, water and other media, L. van Gemert, 2nd ed., 2011
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We also purchased a copy of a database containing over
20,000 odour and flavour threshold values1.

Using these we have calculated odour activity values (OAVs)
to compare the relative impact of different flavour
compounds in the flavour profile of an ingredient.

This analysis however is not straightforward, as thresholds
vary considerably depending on the medium the compound
is in, among other factors.

1) Odour and Flavour threshold values in air, water and other media, L. van Gemert, 2nd ed., 2011
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Odour and flavour descriptions

In addition we also returned to the Fenaroli handbook,
from which we got our original dataset. This also contains
odour and flavour descriptions of many flavour compounds.

butyl isobutyrate strong, fruity odour and sweet, pineapple-like taste
hexyl benzoate woody-green, piney balsamic odour
1-butanethiol unpleasant (skunk) odour
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OAVs and The Flavour Bible

Using these new datasets we revisited the shared
compound hypothesis, by calculating odour activity values
(OAVs) using the VCF database and the odour and flavour
thresholds.

We also looked at the subset of compounds that mention
foods in their odour and flavour descriptions, e.g.:

butyl isobutyrate strong, fruity odour and sweet, pineapple-like taste

Like our recipe data, we randomised The Flavour Bible in
order to see whether compatible food pairs shared more
flavour compounds than expected by chance.
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all shared receptors
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OAVs and The Flavour Bible

Ingredient pairs in The Flavour Bible
share significantly more compounds
than would be expected by chance.

If we limit ourselves to compounds
that have odours or flavours of foods,
we observe a higher significance
score for the shared compound
result.

significance threshold
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Shared compounds V1.1

We can therefore formulate a modified version of the
shared compound hypothesis:

Two foods are more likely to taste good together if they
share dominant chemical flavour compounds (OAV > 1),
particularly if they have food-related aromas.
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Shared olfactory receptors?

Why does the shared compound effect hold?

One explanation is that shared compounds lead to the shared
stimulation of olfactory receptor neurons.

This is because each aroma compound binds to one or more
out of several hundred olfactory receptor proteins.

Each of these proteins is expressed in its specific type of
olfactory receptor neuron, meaning there is a one-to-one map
between proteins and neurons.



Shared olfactory receptors?

We now have a network
with three node types –
more specifically a tripartite
network.



Shared olfactory receptors?

Shared
receptors

Shared
compounds

Ingredient
Pair

Ingredients can share
compounds, which means
they share receptors.
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Shared olfactory receptors?

Shared
receptors

Shared
compounds

Ingredient
Pair

Receptors can be shared even
if compounds are not.

Data on receptors is beginning to
be available.

Dunkel, A. et al. Angew. Chem. Int. Ed. 53, 7124–7143 (2014)
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The Shared Receptor Hypothesis

Comparing to our previous results
let us now measure the number of
compound pairs that share receptors.
These are even more highly
enriched in The Flavor Bible.

And if we only consider shared
receptors for compounds with food
aromas, the result is even more
significant.

significance threshold
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Conclusions

We can create a weighted flavour network of foods, by
projecting the bipartite network of foods and the chemical
flavour compounds they contain.

By comparing this network to recipe databases we show that
the shared compound hypothesis holds true for some regional
cuisines. In other cuisines, an equally significant inverse effect
appears to govern the flavour combinations chosen in recipes.
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Conclusions

Using new data such as compound concentrations &
thresholds, food pairing recommendations and compound
descriptions we can show that foods taste good together if they
share dominant chemical flavour compounds, and particularly
those compounds with food aromas.

The mechanism behind the shared compound hypothesis might
be the fact that shared compounds mean shared stimulation of
olfactory receptor neurons. We find some support for this
hypothesis by showing that shared receptors are even more
significantly enriched than shared compounds.
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